Thermal Imaging Detection System: A Case Study for Indoor Environments

Author:

Drahanský Martin1,Charvát Michal2,Macek Ivo3,Mohelníková Jitka2

Affiliation:

1. TrendBit s.r.o., 616 00 Brno, Czech Republic

2. Faculty of Civil Engineering, Brno University of Technology, 612 00 Brno, Czech Republic

3. National Museum Prague, 110 00 Prague, Czech Republic

Abstract

Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people—from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3