Recent Iris and Ocular Recognition Methods in High- and Low-Resolution Images: A Survey

Author:

Lee Young Won,Park Kang Ryoung

Abstract

Among biometrics, iris and ocular recognition systems are the methods that recognize eye features in an image. Such iris and ocular regions must have a certain image resolution to achieve a high recognition performance; otherwise, the risk of performance degradation arises. This is even more critical in the case of iris recognition where detailed patterns are used. In cases where such low-resolution images are acquired and the acquisition apparatus and environment cannot be improved, recognition performance can be enhanced by obtaining high-resolution images with methods such as super-resolution reconstruction. However, previous survey papers have mainly summarized studies on high-resolution iris and ocular recognition, but do not provide detailed summaries of studies on low-resolution iris and ocular recognition. Therefore, we investigated high-resolution iris and ocular recognition methods and introduced in detail the low-resolution iris and ocular recognition methods and methods of solving the low-resolution problem. Furthermore, since existing survey papers have focused on and summarized studies on traditional handcrafted feature-based iris and ocular recognition, this survey paper also introduced the latest deep learning-based methods in detail.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference66 articles.

1. Password Security: An Analysis of Password Strengths and Vulnerabilities

2. A Survey on Biometrics and Cancelable Biometrics Systems

3. Overview of fingerprint recognition system;Ali;Proceedings of the IEEE International Conference on Electrical, Electronics, and Optimization Techniques,2016

4. Review of palm vein recognition

5. A biometric authentication system based on finger vein recognition;Sapkale;Proceedings of the IEEE International Conference on Inventive Computation Technologies,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3