Collision-Based Window-Scaled Back-Off Mechanism for Dense Channel Resource Allocation in Future Wi-Fi

Author:

Rehman AbdulORCID,Hussain Faisal BashirORCID,Tanveer JawadORCID,Haider AmirORCID

Abstract

Wireless local area networks (WLANs), known as Wi-Fi, are widely deployed to meet the enhanced needs of data-centric internet applications, such as wireless docking, unified communications, cloud computing, interactive multimedia gaming, progressive streaming, support of wearable devices, up-link broadcasts and cellular offloading. Wi-Fi networks typically adopt the Distributed Coordination Function (DCF)-based Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), which uses the Binary Exponential Back-off (BEB) algorithm at the MAC layer mechanism to access channel resources. Currently deployed Wi-Fi networks face huge challenges towards efficient channel access for denser environments due to the blind exponential increase/decrease of a contention window (CW) procedure that is inefficient for a higher number of contending stations. Several modifications and amendments have been proposed to improve the performance of the MAC layer channel access based on a fixed or variable CW size. However, a more realistic network density-based channel resource allocation solution is still missing. An efficient channel resource allocation is one of the most critical challenges for future highly dense WLANs, such as High-Efficiency WLAN (HEW). In this paper, we propose a Channel Collision-based Window Scaled Back-off (CWSB) mechanism for channel resource allocation in HEW. In our proposed CWSB, all contending stations select an optimized CW size for each back-off stage for collided or successfully transmitted data frames. We affirm the performance of the proposed CWSB mechanism with the help of an Iterative Discrete Time Markov Chain (I-DTMC) model. This paper evaluates the performance of our proposed CWSB mechanism in HEW Wi-Fi networks using an NS3 simulator in terms of the normalized throughput and channel access delay compared to the state-of-the-art BEB and a recently proposed mechanism.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Implications of the COVID-19 Pandemic on the Internet Traffic;Feldmann;Proceedings of the Broadband Coverage in Germany; 15th ITG-Symposium,2021

2. A Review on Internet of Things for Defense and Public Safety

3. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments

4. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022;Cisco,2017

5. Usage models for IEEE 802.11 High Efficiency WLAN Study Group (HEW SG)–Liaison with WFA https://www.ieee802.org/11/Reports/hew_update.htm

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Adaptive Backoff Algorithm Based on Topology Status for Flying Ad hoc Networks;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

2. High priority space protection (HPP): countdown space-based MAC protocol with enhanced lockdown effect;Wireless Networks;2024-02-02

3. Applied Mathematics for 5th Generation (5G) and beyond Communication Systems;Mathematics;2022-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3