Abstract
Increasing energy needs, pollution of nature, and eventual depletion of resources have prompted humanity to obtain new technologies and produce energy using clean sources and renewables. In this paper, we design an advanced method to improve the performance of a sliding mode controller combined with control theory for a photovoltaic system. Specifically, we decouple the controlled output of the system from any perturbation source and assess the effectiveness of the results in terms of solution quality, closed-loop control stability, and dynamical convergence of the state variables. This study focuses on the climatic conditions that may affect the behavior of a solar energy plant to supply a motor with the highest possible efficiency and nominal operating conditions. The designed method enables us to obtain an optimal performance by means of advanced control techniques and a slime mould stochastic optimization algorithm. The efficiency and performance of this method are examined based on a benchmark model of a photovoltaic system via numerical analysis and simulation.
Funder
Research Deanship of Hail University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献