Short- and Medium-Term Power Demand Forecasting with Multiple Factors Based on Multi-Model Fusion

Author:

Ji Qingqing,Zhang Shiyu,Duan Qiao,Gong Yuhan,Li Yaowei,Xie Xintong,Bai Jikang,Huang Chunli,Zhao Xu

Abstract

With the continuous development of economy and society, power demand forecasting has become an important task of the power industry. Accurate power demand forecasting can promote the operation and development of the power supply industry. However, since power consumption is affected by a number of factors, it is difficult to accurately predict the power demand data. With the accumulation of data in the power industry, machine learning technology has shown great potential in power demand forecasting. In this study, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM) are integrated by stacking to build an XLG-LR fusion model to predict power demand. Firstly, preprocessing was carried out on 13 months of electricity and meteorological data. Next, the hyperparameters of each model were adjusted and optimized. Secondly, based on the optimal hyperparameter configuration, a prediction model was built using the training set (70% of the data). Finally, the test set (30% of the data) was used to evaluate the performance of each model. Mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and goodness-of-fit coefficient (R^2) were utilized to analyze each model at different lengths of time, including their seasonal, weekly, and monthly forecast effect. Furthermore, the proposed fusion model was compared with other neural network models such as the GRU, LSTM and TCN models. The results showed that the XLG-LR model achieved the best prediction results at different time lengths, and at the same time consumed the least time compared to the neural network model. This method can provide a more reliable reference for the operation and dispatch of power enterprises and future power construction and planning.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of temperature prediction methods for oil-immersed transformers;Measurement;2025-01

2. New Load Forecasting Ensemble Model based on LightGBM for Gas Industry Enterprises;2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2024-05-13

3. The Short Video Popularity Prediction Using Internet of Things and Deep Learning;IEEE Access;2024

4. Explainability Spectrum Analysis of Weather Sequences in Short-Term Load Forecasting;Lecture Notes in Networks and Systems;2024

5. Explainability Analysis of Weather Variables in Short- Term Load Forecasting;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3