Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method

Author:

Aljarrah HussamORCID,Alaroud MohammadORCID,Ishak AnuarORCID,Darus MaslinaORCID

Abstract

Most physical phenomena are formulated in the form of non-linear fractional partial differential equations to better understand the complexity of these phenomena. This article introduces a recent attractive analytic-numeric approach to investigate the approximate solutions for nonlinear time fractional partial differential equations by means of coupling the Laplace transform operator and the fractional Taylor’s formula. The validity and the applicability of the used method are illustrated via solving nonlinear time-fractional Kolmogorov and Rosenau–Hyman models with appropriate initial data. The approximate series solutions for both models are produced in a rapid convergence McLaurin series based upon the limit of the concept with fewer computations and more accuracy. Graphs in two and three dimensions are drawn to detect the effect of time-Caputo fractional derivatives on the behavior of the obtained results to the aforementioned models. Comparative results point out a more accurate approximation of the proposed method compared with existing methods such as the variational iteration method and the homotopy perturbation method. The obtained outcomes revealed that the proposed approach is a simple, applicable, and convenient scheme for solving and understanding a variety of non-linear physical models.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Fractional calculus and continuous-time finance II: the waiting-time distribution

2. Some applications of nonlinear fractional differential equations and their approximations;He;Bull. Sci. Technol.,1999

3. Linear Models of Dissipation whose Q is almost Frequency Independent--II

4. The Fractional Calculus;Oldham,1974

5. Fractional Differential Equations;Podlubny,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3