Global Prescribed-Time Stabilization of High-Order Nonlinear Systems with Asymmetric Actuator Dead-Zone

Author:

Guo Xin,Yao Hejun,Gao FangzhengORCID

Abstract

This paper is concerned with the global prescribed-time stabilization problem for a class of uncertain high-order nonlinear systems (HONSs) with an asymmetric actuator dead-zone. Firstly, a new state-scaling transformation (SST) is developed for high-order nonlinear systems to change the original prescribed-time stabilization into the finite-time stabilization of the transformed one. The defects of the conventional one introduced in Song et al. (2017), which is unable to ensure the closed-loop stability behind a prespecified convergence time and a closed-loop system, which is only driven to the neighborhood of destination, is successfully overcome by introducing a switching mechanism in our proposed SST. Then, by using the adding a power integrator (API) technique, a state feedback controller is explicitly constructed to achieve the requirements of the closed-loop prescribed time convergence. Lastly, a liquid-level system is utilized to validate the theoretical results.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3