Abstract
The early warning system detects early and responds quickly to emergencies in high-risk patients, such as cardiac arrest in hospitalized patients. However, traditional early warning systems have the problem of frequent false alarms due to low positive predictive value and sensitivity. We conducted early prediction research on cardiac arrest using time-series data such as biosignal and laboratory data. To derive the data attributes that affect the occurrence of cardiac arrest, we performed a correlation analysis between the occurrence of cardiac arrest and the biosignal data and laboratory data. To improve the positive predictive value and sensitivity of early cardiac arrest prediction, we evaluated the performance according to the length of the time series of measured biosignal data, laboratory data, and patient data range. We propose a machine learning and deep learning algorithm: the decision tree, random forest, logistic regression, long short-term memory (LSTM), gated recurrent unit (GRU) model, and the LSTM–GRU hybrid model. We evaluated cardiac arrest prediction models. In the case of our proposed LSTM model, the positive predictive value was 85.92% and the sensitivity was 89.70%.
Funder
National Research Foundation of Korea
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献