Abstract
This paper explores statistical inferences when the lifetime of product follows the inverse Nakagami distribution using progressive Type-II censored data. Likelihood-based and maximum product of spacing (MPS)-based methods are considered for estimating the parameters of the model. In addition, approximate confidence intervals are constructed via the asymptotic theory using both likelihood and product spacing functions. Based on traditional likelihood and the product of spacing functions, Bayesian estimates are also considered under a squared error loss function using non-informative priors, and Gibbs sampling based on the MCMC algorithm is proposed to approximate the Bayes estimates, where the highest posterior density credible intervals of the parameters are obtained. Numerical studies are presented to compare the proposed estimators using Monte Carlo simulations. To demonstrate the proposed methodology in a real-life scenario, a well-known data set on agricultural machine elevators with high defect rates is also analyzed for illustration.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献