Benchmarking Cost-Effective Opinion Injection Strategies in Complex Networks

Author:

Topîrceanu Alexandru

Abstract

Inferring the diffusion mechanisms in complex networks is of outstanding interest since it enables better prediction and control over information dissemination, rumors, innovation, and even infectious outbreaks. Designing strategies for influence maximization in real-world networks is an ongoing scientific challenge. Current approaches commonly imply an optimal selection of spreaders used to diffuse and indoctrinate neighboring peers, often overlooking realistic limitations of time, space, and budget. Thus, finding trade-offs between a minimal number of influential nodes and maximizing opinion coverage is a relevant scientific problem. Therefore, we study the relationship between specific parameters that influence the effectiveness of opinion diffusion, such as the underlying topology, the number of active spreaders, the periodicity of spreader activity, and the injection strategy. We introduce an original benchmarking methodology by integrating time and cost into an augmented linear threshold model and measure indoctrination expense as a trade-off between the cost of maintaining spreaders’ active and real-time opinion coverage. Simulations show that indoctrination expense increases polynomially with the number of spreaders and linearly with the activity periodicity. In addition, keeping spreaders continuously active instead of periodically activating them can increase expenses by 69–84% in our simulation scenarios. Lastly, we outline a set of general rules for cost-effective opinion injection strategies.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference64 articles.

1. The Strength of Weak Ties

2. Linked: The New Science of Networks;Barabási,2002

3. Network science

4. Computational Social Science

5. Efficient influence maximization in social networks;Chen;Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3