Abstract
Inferring the diffusion mechanisms in complex networks is of outstanding interest since it enables better prediction and control over information dissemination, rumors, innovation, and even infectious outbreaks. Designing strategies for influence maximization in real-world networks is an ongoing scientific challenge. Current approaches commonly imply an optimal selection of spreaders used to diffuse and indoctrinate neighboring peers, often overlooking realistic limitations of time, space, and budget. Thus, finding trade-offs between a minimal number of influential nodes and maximizing opinion coverage is a relevant scientific problem. Therefore, we study the relationship between specific parameters that influence the effectiveness of opinion diffusion, such as the underlying topology, the number of active spreaders, the periodicity of spreader activity, and the injection strategy. We introduce an original benchmarking methodology by integrating time and cost into an augmented linear threshold model and measure indoctrination expense as a trade-off between the cost of maintaining spreaders’ active and real-time opinion coverage. Simulations show that indoctrination expense increases polynomially with the number of spreaders and linearly with the activity periodicity. In addition, keeping spreaders continuously active instead of periodically activating them can increase expenses by 69–84% in our simulation scenarios. Lastly, we outline a set of general rules for cost-effective opinion injection strategies.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference64 articles.
1. The Strength of Weak Ties
2. Linked: The New Science of Networks;Barabási,2002
3. Network science
4. Computational Social Science
5. Efficient influence maximization in social networks;Chen;Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2009
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献