Dynamical Analysis of Fractional Integro-Differential Equations

Author:

Hassan Taher S.,Odinaev IsmoilORCID,Shah Rasool,Weera WajareeORCID

Abstract

In this article, we solve fractional Integro differential equations (FIDEs) through a well-known technique known as the Chebyshev Pseudospectral method. In the Caputo manner, the fractional derivative is taken. The main advantage of the proposed technique is that it reduces such types of equations to linear or nonlinear algebraic equations. The acquired results demonstrate the accuracy and reliability of the current approach. The results are compared to those obtained by other approaches and the exact solution. Three test problems were used to demonstrate the effectiveness of the proposed technique. For different fractional orders, the results of the proposed technique are plotted. Plotting absolute error figures and comparing results to some existing solutions reveals the accuracy of the proposed technique. The comparison with the exact solution, hybrid Legendre polynomials, and block-pulse functions approach, Reproducing Kernel Hilbert Space method, Haar wavelet method, and Pseudo-operational matrix method confirm that Chebyshev Pseudospectral method is more accurate and straightforward as compared to other methods.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Fractional Calculus: History, Definitions and Applications for the Engineer;Loverro,2004

2. Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids

3. Nonlinear oscillation with fractional derivative and its applications;He;Proceedings of the International Conference on Vibrating Engineering,1998

4. Electro-chemical manifestation of nanoplasmonics in fractal media

5. Long memory processes and fractional integration in econometrics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3