Robust Variable Selection for Single-Index Varying-Coefficient Model with Missing Data in Covariates

Author:

Song Yunquan,Liu Yaqi,Su Hang

Abstract

As applied sciences grow by leaps and bounds, semiparametric regression analyses have broad applications in various fields, such as engineering, finance, medicine, and public health. Single-index varying-coefficient model is a common class of semiparametric models due to its flexibility and ease of interpretation. The standard single-index varying-coefficient regression models consist mainly of parametric regression and semiparametric regression, which assume that all covariates can be observed. The assumptions are relaxed by taking the models with missing covariates into consideration. To eliminate the possibility of bias due to missing data, we propose a probability weighted objective function. In this paper, we investigate the robust variable selection for a single-index varying-coefficient model with missing covariates. Using parametric and nonparametric estimates of the likelihood of observations with fully observed covariates, we examine the estimators for estimating the likelihood of observations. For variable selection, we use a weighted objective function penalized by a non-convex SCAD. Theoretical challenges include the treatment of missing data and a single-index varying-coefficient model that uses both the non-smooth loss function and the non-convex penalty function. We provide Monte Carlo simulations to evaluate the performance of our approach.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3