Adaptation and Learning to Learn (ALL): An Integrated Approach for Small-Sample Parking Occupancy Prediction

Author:

Qu HaohaoORCID,Liu ShengORCID,Li JunORCID,Zhou Yuren,Liu Rui

Abstract

Parking occupancy prediction (POP) plays a vital role in many parking-related smart services for better parking management. However, an issue hinders its mass deployment: many parking facilities cannot collect enough data to feed data-hungry machine learning models. To tackle the challenges in small-sample POP, we propose an approach named Adaptation and Learning to Learn (ALL) by adopting the capability of advanced deep learning and federated learning. ALL integrates two novel ideas: (1) Adaptation: by leveraging the Asynchronous Advantage Actor-Critic (A3C) reinforcement learning technique, an auto-selector module is implemented, which can group and select data-scarce parks automatically as supporting sources to enable the knowledge adaptation in model training; and (2) Learning to learn: by applying federated meta-learning on selected supporting sources, a meta-learner module is designed, which can train a high-performance local prediction model in a collaborative and privacy-preserving manner. Results of an evaluation with 42 parking lots in two Chinese cities (Shenzhen and Guangzhou) show that, compared to state-of-the-art baselines: (1) the auto-selector can reduce the model variance by about 17.8%; (2) the meta-learner can train a converged model 102× faster; and (3) finally, ALL can boost the forecasting performance by about 29.8%. Through the integration of advanced machine learning methods, i.e., reinforcement learning, meta-learning, and federated learning, the proposed approach ALL represents a significant step forward in solving small-sample issues in parking occupancy prediction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3