MS-YOLOv8-Based Object Detection Method for Pavement Diseases

Author:

Han Zhibin1,Cai Yutong1,Liu Anqi1,Zhao Yiran1,Lin Ciyun12ORCID

Affiliation:

1. School of Transportation, Jilin University, Changchun 130022, China

2. Jilin Engineering Research Center for Intelligent Transportation System, Changchun 130022, China

Abstract

Detection of pavement diseases is crucial for road maintenance. Traditional methods are costly, time-consuming, and less accurate. This paper introduces an enhanced pavement disease recognition algorithm, MS-YOLOv8, which modifies the YOLOv8 model by incorporating three novel mechanisms to improve detection accuracy and adaptability to varied pavement conditions. The Deformable Large Kernel Attention (DLKA) mechanism adjusts convolution kernels dynamically, adapting to multi-scale targets. The Large Separable Kernel Attention (LSKA) enhances the SPPF feature extractor, boosting multi-scale feature extraction capabilities. Additionally, Multi-Scale Dilated Attention in the network’s neck performs Spatially Weighted Dilated Convolution (SWDA) across different dilatation rates, enhancing background distinction and detection precision. Experimental results show that MS-YOLOv8 increases background classification accuracy by 6%, overall precision by 1.9%, and mAP by 1.4%, with specific disease detection mAP up by 2.9%. Our model maintains comparable detection speeds. This method offers a significant reference for automatic road defect detection.

Funder

Scientific and Technological Developing Project of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3