A New Method for Dynamical System Identification by Optimizing the Control Parameters of Legendre Multiwavelet Neural Network

Author:

Zheng Xiaoyang1ORCID,Liu Shiyu1,Yu Zejiang1,Luo Chengyou1

Affiliation:

1. School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China

Abstract

Wavelet neural networks have been widely applied to dynamical system identification fields. The most difficult issue lies in selecting the optimal control parameters (the wavelet base type and corresponding resolution level) of the network structure. This paper utilizes the advantages of Legendre multiwavelet (LW) bases to construct a Legendre multiwavelet neural network (LWNN), whose simple structure consists of an input layer, hidden layer, and output layer. It is noted that the activation functions in the hidden layer are adopted as LW bases. This selection if based on the its rich properties of LW bases, such as piecewise polynomials, orthogonality, various regularities, and more. These properties contribute to making LWNNs more effective in approximating the complex characteristics exhibited by uncertainties, step, nonlinear, and ramp in the dynamical systems compared to traditional wavelet neural networks. Then, the number of selection LW bases and the corresponding resolution level are effectively optimized by the simple Genetic Algorithm, and the improved gradient descent algorithm is implemented to learn the weight coefficients of LWNN. Finally, four nonlinear dynamical system identification problems are applied to validate the efficiency and feasibility of the proposed LWNN-GA method. The experiment results indicate that the LWNN-GA method achieves better identification accuracy with a simpler network structure than other existing methods.

Funder

Fundamental and Advanced Research Project of Chongqing CSTC of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3