Hierarchical and Bidirectional Joint Multi-Task Classifiers for Natural Language Understanding

Author:

Ji Xiaoyu12ORCID,Hu Wanyang3,Liang Yanyan14ORCID

Affiliation:

1. School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China

2. Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou 543002, China

3. Faculty of Informatics, Università della Svizzera Italiana, 6962 Lugano, Switzerland

4. CEI High-Tech Research Institute Co., Ltd., Macau, China

Abstract

The MASSIVE dataset is a spoken-language comprehension resource package for slot filling, intent classification, and virtual assistant evaluation tasks. It contains multi-language utterances from human beings communicating with a virtual assistant. In this paper, we exploited the relationship between intent classification and slot filling to improve the exact match accuracy by proposing five models with hierarchical and bidirectional architectures. There are two variants for hierarchical architectures and three variants for bidirectional architectures. These are the hierarchical concatenation model, the hierarchical attention-based model, the bidirectional max-pooling model, the bidirectional LSTM model, and the bidirectional attention-based model. The results of our models showed a significant improvement in the averaged exact match accuracy. The hierarchical attention-based model improved the accuracy by 1.01 points for the full training dataset. As for the zero-shot setup, we observed that the exact match accuracy increased from 53.43 to 53.91. In this study, we observed that, for multi-task problems, utilizing the relevance between different tasks can help in improving the model’s overall performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Science and Technology Development Fund of Macau

Guangdong Provincial Key R&D Programme

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3