Affiliation:
1. School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China
2. Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
Abstract
The main purpose of this paper is to introduce a new family of parametric Kantorovichtype operators on the half-bounded interval. The convergence properties of these new operators are investigated. The Voronovskaja-type weak inverse theorem and the rate of uniform convergence are obtained. Furthermore, we obtain some shape preserving properties of these operators, including monotonicity, convexity, starshapeness, and semi-additivity preserving properties. Finally, some numerical illustrative examples show that these new operators have a better approximation performance than the classical ones.
Funder
Science and Technology Project of Hebei Education Department
Postgraduate Innovation Funding Project of Hebei Province
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference26 articles.
1. Ditzian, Z., and Totik, V. (1987). Moduli of Smoothness, Springer.
2. DeVore, R.A., and Lorentz, G.G. (1987). Constructive Approximation, Springer. [1st ed.].
3. Positive linear operators which preserve x2;King;Acta Math. Hung.,2003
4. Positive linear operators preserving τ and τ2;Acar;Constr. Math. Anal.,2019
5. Modified Kantorovich operators providing a better error estimation;Qi;J. Math. Syst. Sci.,2015