Variable Selection for Sparse Logistic Regression with Grouped Variables

Author:

Zhong Mingrui1ORCID,Yin Zanhua1ORCID,Wang Zhichao1

Affiliation:

1. School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China

Abstract

We present a new penalized method for estimation in sparse logistic regression models with a group structure. Group sparsity implies that we should consider the Group Lasso penalty. In contrast to penalized log-likelihood estimation, our method can be viewed as a penalized weighted score function method. Under some mild conditions, we provide non-asymptotic oracle inequalities promoting the group sparsity of predictors. A modified block coordinate descent algorithm based on a weighted score function is also employed. The net advantage of our algorithm over existing Group Lasso-type procedures is that the tuning parameter can be pre-specified. The simulations show that this algorithm is considerably faster and more stable than competing methods. Finally, we illustrate our methodology with two real data sets.

Funder

Educational Commission of Jiangxi Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Regression shrinkage and selection via the lasso;Tibshirani;J. R. Stat. Soc. Ser. Stat. Methodol.,1996

2. Variable selection via nonconcave penalized likelihood and its oracle properties;Fan;J. Am. Stat. Assoc.,2001

3. Regularization and variable selection via the elastic net;Zou;J. R. Stat. Soc. Ser. Stat. Methodol.,2005

4. The Dantzig selector: Statistical estimation when p is much larger than n;Candes;Ann. Stat.,2007

5. Nearly unbiased variable selection under minimax concave penalty;Zhang;Ann. Stat.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3