Enhancing Dropout Prediction in Distributed Educational Data Using Learning Pattern Awareness: A Federated Learning Approach

Author:

Zhang Tiancheng1ORCID,Liu Hengyu1,Tao Jiale1,Wang Yuyang1,Yu Minghe1ORCID,Chen Hui2,Yu Ge1ORCID

Affiliation:

1. School of Computer Science and Engineering, Northeast University, Shenyang 110819, China

2. School of Computing, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia

Abstract

Learning patterns are crucial for predicting student dropout in educational settings, providing insights into students’ behaviors and motivations. However, existing mainstream dropout prediction models have limitations in effectively mining these learning patterns and cannot mine these learning patterns in large-scale, distributed educational datasets. In this study, we analyze the representations of mainstream models and identify their inability to capture students’ distinct learning patterns and personalized variations across courses. Addressing these challenges, our study adopts a federated learning approach, tailoring the analysis to leverage distributed data while maintaining privacy and decentralization. We introduce the Federated Learning Pattern Aware Dropout Prediction Model (FLPADPM), which utilizes a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (LSTM) layer within a federated learning framework. This model is designed to effectively capture nuanced learning patterns and adapt to variations across diverse educational settings. To evaluate the performance of LPADPM, we conduct an empirical evaluation using the KDD Cup 2015 and XuetangX datasets. Our results demonstrate that LPADPM outperforms state-of-the-art models in accurately predicting student dropout behavior. Furthermore, we visualize the representations generated by LPADPM, which confirm its ability to effectively mine learning patterns in different courses. Our results showcase the model’s ability to capture and analyze learning patterns across various courses and institutions within a federated learning context.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3