Unveiling the Enigma: Exploring Risk Factors and Mechanisms for Psychotic Symptoms in Alzheimer’s Disease through Electronic Medical Records with Deep Learning Models

Author:

Fan Peihao1ORCID,Miranda Oshin1,Qi Xiguang1ORCID,Kofler Julia2,Sweet Robert A.34,Wang Lirong1

Affiliation:

1. Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA

2. Department of Pathology, Division of Neuropathology, UPMC Presbyterian Hospital, Pittsburgh, PA 15213, USA

3. Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA

4. Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA

Abstract

Around 50% of patients with Alzheimer’s disease (AD) may experience psychotic symptoms after onset, resulting in a subtype of AD known as psychosis in AD (AD + P). This subtype is characterized by more rapid cognitive decline compared to AD patients without psychosis. Therefore, there is a great need to identify risk factors for the development of AD + P and explore potential treatment options. In this study, we enhanced our deep learning model, DeepBiomarker, to predict the onset of psychosis in AD utilizing data from electronic medical records (EMRs). The model demonstrated superior predictive capacity with an AUC (area under curve) of 0.907, significantly surpassing conventional risk prediction models. Utilizing a perturbation-based method, we identified key features from multiple medications, comorbidities, and abnormal laboratory tests, which notably influenced the prediction outcomes. Our findings demonstrated substantial agreement with existing studies, underscoring the vital role of metabolic syndrome, inflammation, and liver function pathways in AD + P. Importantly, the DeepBiomarker model not only offers a precise prediction of AD + P onset but also provides mechanistic understanding, potentially informing the development of innovative treatments. With additional validation, this approach could significantly contribute to early detection and prevention strategies for AD + P, thereby improving patient outcomes and quality of life.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3