A Systematic Review of Inverse Agonism at Adrenoceptor Subtypes

Author:

Michel Martin C.ORCID,Michel-Reher Martina B.,Hein PeterORCID

Abstract

As many, if not most, ligands at G protein-coupled receptor antagonists are inverse agonists, we systematically reviewed inverse agonism at the nine adrenoceptor subtypes. Except for β3-adrenoceptors, inverse agonism has been reported for each of the adrenoceptor subtypes, most often for β2-adrenoceptors, including endogenously expressed receptors in human tissues. As with other receptors, the detection and degree of inverse agonism depend on the cells and tissues under investigation, i.e., they are greatest when the model has a high intrinsic tone/constitutive activity for the response being studied. Accordingly, they may differ between parts of a tissue, for instance, atria vs. ventricles of the heart, and within a cell type, between cellular responses. The basal tone of endogenously expressed receptors is often low, leading to less consistent detection and a lesser extent of observed inverse agonism. Extent inverse agonism depends on specific molecular properties of a compound, but inverse agonism appears to be more common in certain chemical classes. While inverse agonism is a fascinating facet in attempts to mechanistically understand observed drug effects, we are skeptical whether an a priori definition of the extent of inverse agonism in the target product profile of a developmental candidate is a meaningful option in drug discovery and development.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Reference161 articles.

1. International Union of Pharmacology Nomenclature of Adrenoceptors;Bylund;Pharmacol. Rev.,1994

2. International Union of Pharmacology X. Recommendation for nomenclature of α1-adrenoceptors: Consensus update;Hieble;Pharmacol. Rev.,1995

3. Classification of ?1-adrenoceptor subtypes

4. Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function.

5. Historical review: Negative efficacy and the constitutive activity of G-protein-coupled receptors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3