Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) defects are the primary cause of inborn errors of energy metabolism. Despite considerable progress on their genetic basis, their global pathophysiological consequences remain undefined. Previous studies reported that OXPHOS dysfunction associated with complex III deficiency exacerbated the expression and mitochondrial location of cytoskeletal gelsolin (GSN) to promote cell survival responses. In humans, besides the cytosolic isoform, GSN presents a plasma isoform secreted to extracellular environments. We analyzed the interplay between both GSN isoforms in human cellular and clinical models of OXPHOS dysfunction. Regardless of its pathogenic origin, OXPHOS dysfunction induced the physiological upregulation of cytosolic GSN in the mitochondria (mGSN), in parallel with a significant downregulation of plasma GSN (pGSN) levels. Consequently, significantly high mGSN-to-pGSN ratios were associated with OXPHOS deficiency both in human cells and blood. In contrast, control cells subjected to hydrogen peroxide or staurosporine treatments showed no correlation between oxidative stress or cell death induction and the altered levels and subcellular location of GSN isoforms, suggesting their specificity for OXPHOS dysfunction. In conclusion, a high mitochondrial-to-plasma GSN ratio represents a useful cellular indicator of OXPHOS defects, with potential use for future research of a wide range of clinical conditions with mitochondrial involvement.
Funder
Instituto de Salud Carlos III
Comunidad de Madrid
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献