5-aza-2′-Deoxycytidine Induces a RIG-I-Related Innate Immune Response by Modulating Mitochondria Stress in Neuroblastoma

Author:

Lin Hung-YuORCID,Chuang Jiin-Haur,Wang Pei-Wen,Lin Tsu-KungORCID,Wu Min-Tsui,Hsu Wen-Ming,Chuang Hui-ChingORCID

Abstract

Background: Neuroblastoma (NB) is one of the most common malignant solid tumors to occur in children, characterized by a wide range of genetic and epigenetic aberrations. We studied whether modifications of the latter with a 5-aza-2′-deoxycytidine (decitabine, Dac) DNA methyltransferase inhibitor can provide a therapeutic advantage in NB. Methods: NB cells with or without MYCN amplification were treated with Dac. We used flow cytometry to measure cell apoptosis and death and mitochondrial reactive oxygen species (mtROS), microarray to analyze gene expression profile and bisulfite pyrosequencing to determine the methylation level of the DDX58/RIG-I promoter. Western blot was used to detect markers related to innate immune response and apoptotic signaling, while immunofluorescent imaging was used to determine dsRNA. We generated mtDNA depleted ρ0 cells using long-term exposure to low-dose ethidium bromide. Results: Dac preferentially induced a RIG-I-predominant innate immune response and cell apoptosis in SK-N-AS NB cells, significantly reduced the methylation level of the DDX58/RIG-I promoter and increased dsRNA accumulation in the cytosol. Dac down regulated mitochondrial genes related to redox homeostasis, but augmented mtROS production. ρ0 cells demonstrated a blunted response in innate immune response and apoptotic cell death, as well as greatly diminished dsRNA. The response of NB cells to CDDP and poly(I:C) was potentiated by Dac in association with increased mtROS, which was blunted in ρ0 cells. Conclusions: This study indicates that Dac effectively induces a RIG-I-related innate immune response and apoptotic signaling primarily in SK-N-AS NB cells by hypomethylating DDX58/RIG-I promoter, elevated mtROS and increased dsRNA. Dac can potentiate the cytotoxic effects of CDDP and poly(I:C) in NB cells.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3