Mapping Soil Properties in the Haihun River Sub-Watershed, Yangtze River Basin, China, by Integrating Machine Learning and Variable Selection

Author:

Huang Jun1,Liu Jia2,Ye Yingcong2ORCID,Jiang Yameng2,Lai Yuying1,Qin Xianbing1,Zhang Lin1,Jiang Yefeng2ORCID

Affiliation:

1. Basic Geological Survey Institute of Jiangxi Geological Survey and Exploration Institute (Jiangxi Nonferrous Geological Mineral Exploration and Development Institute), Nanchang 330045, China

2. College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

Mapping soil properties in sub-watersheds is critical for agricultural productivity, land management, and ecological security. Machine learning has been widely applied to digital soil mapping due to a rapidly increasing number of environmental covariates. However, the inclusion of many environmental covariates in machine learning models leads to the problem of multicollinearity, with poorly understood consequences for prediction performance. Here, we explored the effects of variable selection on the prediction performance of two machine learning models for multiple soil properties in the Haihun River sub-watershed, Jiangxi Province, China. Surface soils (0–20 cm) were collected from a total of 180 sample points in 2022. The optimal covariates were selected from 40 environmental covariates using a recursive feature elimination algorithm. Compared to all-variable models, the random forest (RF) and extreme gradient boosting (XGBoost) models with variable selection improved in prediction accuracy. The R2 values of the RF and XGBoost models increased by 0.34 and 0.47 for the soil organic carbon, by 0.67 and 0.62 for the total phosphorus, and by 0.43 and 0.62 for the available phosphorus, respectively. The models with variable selection presented reduced global uncertainty, and the overall uncertainty of the RF model was lower than that of the XGBoost model. The soil properties showed high spatial heterogeneity based on the models with variable selection. Remote sensing covariates (particularly principal component 2) were the major factors controlling the distribution of the soil organic carbon. Human activity covariates (mainly land use) and organism covariates (mainly potential evapotranspiration) played a predominant role in driving the distribution of the soil total and soil available phosphorus, respectively. This study indicates the importance of variable selection for predicting multiple soil properties and mapping their spatial distribution in sub-watersheds.

Funder

Jiangxi Geological Bureau Young Science and Technology Leader Training Programme Project

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3