Dual-Channel Switchable Metasurface Filters for Compact Spectral Imaging with Deep Compressive Reconstruction

Author:

Wang Chang1ORCID,Liu Xinyu1,Zhang Yang1,Sun Yan1,Yu Zeqing1,Zheng Zhenrong12

Affiliation:

1. College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China

Abstract

Spectral imaging technology, which aims to capture images across multiple spectral channels and create a spectral data cube, has been widely utilized in various fields. However, conventional spectral imaging systems face challenges, such as slow acquisition speed and large size. The rapid development of optical metasurfaces, capable of manipulating light fields versatilely and miniaturizing optical components into ultrathin planar devices, offers a promising solution for compact hyperspectral imaging (HSI). This study proposes a compact snapshot compressive spectral imaging (SCSI) system by leveraging the spectral modulations of metasurfaces with dual-channel switchable metasurface filters and employing a deep-learning-based reconstruction algorithm. To achieve compactness, the proposed system integrates dual-channel switchable metasurface filters using twisted nematic liquid crystals (TNLCs) and anisotropic titanium dioxide (TiO2) nanostructures. These thin metasurface filters are closely attached to the image sensor, resulting in a compact system. The TNLCs possess a broadband linear polarization conversion ability, enabling the rapid switching of the incidence polarization state between x-polarization and y-polarization by applying different voltages. This polarization conversion facilitates the generation of two groups of transmittance spectra for wavelength-encoding, providing richer information for spectral data cube reconstruction compared to that of other snapshot compressive spectral imaging techniques. In addition, instead of employing classic iterative compressive sensing (CS) algorithms, an end-to-end residual neural network (ResNet) is utilized to reconstruct the spectral data cube. This neural network leverages the 2-frame snapshot measurements of orthogonal polarization channels. The proposed hyperspectral imaging technology demonstrates superior reconstruction quality and speed compared to those of the traditional compressive hyperspectral image recovery methods. As a result, it is expected that this technology will have substantial implications in various domains, including but not limited to object detection, face recognition, food safety, biomedical imaging, agriculture surveillance, and so on.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3