A Quick Method for Predicting Reflectance Spectra of Nanophotonic Devices via Artificial Neural Network

Author:

Wang Rui1,Zhang Baicheng1,Wang Guan1,Gao Yachen1ORCID

Affiliation:

1. Electronic Engineering College, Heilongjiang University, Harbin 150080, China

Abstract

Nanophotonics use the interaction between light and subwavelength structures to design nanophotonic devices and to show unique optical, electromagnetic, and acoustic properties that natural materials do not have. However, this usually requires considerable expertise and a lot of time-consuming electromagnetic simulations. With the continuous development of artificial intelligence, people are turning to deep learning for designing nanophotonic devices. Deep learning models can continuously fit the correlation function between the input parameters and output, using models with weights and biases that can obtain results in milliseconds to seconds. In this paper, we use finite-difference time-domain for simulations, and we obtain the reflectance spectra from 2430 different structures. Based on these reflectance spectra data, we use neural networks for training, which can quickly predict unseen structural reflectance spectra. The effectiveness of this method is verified by comparing the predicted results to the simulation results. Almost all results maintain the main trend, the MSE of 94% predictions are below 10−3, all are below 10−2, and the MAE of 97% predictions are below 2 × 10−2. This approach can speed up device design and optimization, and provides reference for scientific researchers.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3