Analyses of All Small Molecule-Based Pentacene/C60 Organic Photodiodes Using Vacuum Evaporation Method

Author:

Kim Young Woo1ORCID,Lee Dongwoon1ORCID,Jeon Yongmin2ORCID,Yoo Hocheon1ORCID,Cho Eou-Sik1ORCID,Darici Ezgi3,Park Young-Jun3ORCID,Seo Kang-Il3,Kwon Sang-Jik1

Affiliation:

1. Department of Electronics Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea

2. Department of Biomedical Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea

3. CLAP Co., Ltd., 1342 Seongnam-Daero, Sujeong-gu, Seongnam City 13120, Gyeonggi-do, Republic of Korea

Abstract

The vacuum process using small molecule-based organic materials to make organic photodiodes (OPDIs) will provide many promising features, such as well-defined molecular structure, large scalability, process repeatability, and good compatibility for CMOS integration, compared to the widely used Solution process. We present the performance of planar heterojunction OPDIs based on pentacene as the electron donor and C60 as the electron acceptor. In these devices, MoO3 and BCP interfacial layers were interlaced between the electrodes and the active layer as the electron- and hole-blocking layer, respectively. Typically, BCP played a good role in suppressing the dark current by two orders higher than that without that layer. These devices showed a significant dependence of the performance on the thickness of the pentacene. In particular, with the pentacene thickness of 25 nm, an external quantum efficiency at the 360 nm wavelength according to the peak absorption of C60 was enhanced by 1.5 times due to a cavity effect, compared to that of the non-cavity device. This work shows the importance of a vacuum processing approach based on small molecules for OPDIs, and the possibility of improving the performance via the optimization of the device architecture.

Funder

National Research Foundation of Korea (NRF) grant

Korea Institute for Advancement of Technology (KIAT) grant

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3