Synthesis of P-/N-Containing Bamboo-Activated Carbon toward Enhanced Thermal Stability and Flame Retardancy of Polylactic Acid

Author:

Yin Ningning,Zhong Jinhuan,Tian Huayu,Zhou Zenan,Ying Weijun,Dai Jinfeng,Li Wenzhu,Zhang Wenbiao

Abstract

A P-/N-containing bamboo-activated carbon (BACm) was successfully synthesized by steam activation of bamboo charcoal and chemical grafting to as-prepared activated carbon using the reaction of phosphoric acid and urea. Characterizations of BACm presented a synergistic grafting of P and N elements to the BAC surface. The BACm was further loaded in a polylactic acid (PLA) matrix to prepare BACm/PLA composites. Mechanical strength study showed tensile strength dropped from 75.19 MPa to 61.30 MPa, and tensile modulus from 602.49 MPa to 375.56 MPa, suggesting a rigidity reduction and deformation resistance enhancement owing to the roughened surface of BACm that interlocked with the polymer. The thermogravimetric analysis showed that the carbon residue rate of BACm dramatically fell to 49.25 wt.% in contrast to 88.28% for the control BAC, and cone calorimeter measurements confirmed the enhancement of flame retardancy of the composites with BACm loading, and the carbon residue rate increased progressively with BACm loading in the composites, notably up to 8.60 wt.% for the BAC/PLA9 composite, which outweighed the theoretical residue rate by more than 50%. The elemental analysis also confirmed rich P/N levels of the dense carbon residue layer that could perform synergistically and effectively in fire suppression. The BACm tended to stimulate the earlier decomposition of the composites and formed a continuous residual carbon layer which functioned as an effective barrier hindering the mass and heat transfer between the combustion zone and the underlying matrix. Moreover, 9 wt.% of BACm loading could attain a V-0 rating (UL94) for the composite with an improved limiting oxygen index up to 31.7%. The biomass-based modified activated carbon in this work could be considered as an alternative flame retardant in polymer applications.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3