Graphene Oxide-Modified Epoxy Asphalt Bond Coats with Enhanced Bonding Properties

Author:

Zhang Junsheng,Wang Rui,Zhao Ruikang,Jing Fan,Li Chenxuan,Wang Qingjun,Xie HongfengORCID

Abstract

The bonding strength of the bond coat plays an important role in the composite action between the wearing surface and the deck plate of the orthotropic steel deck system. Poor bonding results in the delamination of the wearing surface from the deck plate. Graphene oxide (GO) possesses outstanding mechanical and thermal properties, as well as impressive multifunctional groups, which makes it an ideal reinforcement candidate for polymer matrices. In this study, graphene oxide was used to improve the bonding strength and toughness of the epoxy asphalt bond coat (EABC). The dispersion, hydrophobicity, viscosity–time behavior, phase-separated morphology, dynamic mechanical properties, pull-off strength, shear strength and mechanical performance of GO-modified EABCs were investigated using various techniques. The inclusion of GO improved the hydrophobicity of the unmodified EABC. The viscosity of the unmodified EABC was lowered with the addition of GO during curing. Moreover, the allowable construction time for the modified EABCs was extended with the GO loading. The incorporation of GO enhanced the stiffness of the unmodified EABC in the glassy and rubbery states. However, graphene oxide lowered the glass transition temperature of the asphalt of the unmodified EABC. Confocal microscopy observations revealed that GO was invisible in both the asphalt and epoxy phases of the EABC. The inclusion of GO improved the bonding strength, particularly at 60 °C, and mechanical properties of the unmodified EABC.

Publisher

MDPI AG

Subject

General Materials Science

Reference52 articles.

1. Chen, W.-F., and Duan, L. Orthotropic steel decks. Bridge Engineering Handbook: Superstructure Design, 2014.

2. Wearing surfaces for orthotropic steel bridge decks;Hulsey;Transp. Res. Rec.,1999

3. Influence of wearing surfacing on performance of orthotropic steel plate decks;Seim;Transp. Res. Rec.,2004

4. Connor, R.J., Fisher, J., Gatti, W., Gopalaratnam, V., Kozy, B., Leshko, B., McQuaid, D.L., Medlock, R., Mertz, D., Murphy, T., FHWA-IF-12-027. Manual for Design, Construction, and Maintenance of Orthotropic Steel Deck Bridges, 2012.

5. Asphalt surfaces on steel bridge decks;Hicks;Transp. Res. Rec.,2000

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3