Author:
Li Guang,Wan Yang,Guo Jie,Ma Fengshan,Zhao Haijun,Wu Yanfang
Abstract
Due to obvious differences in the properties of the filling body and surrounding rock, deformation always develops near the contact zone. Thus, determining the damage and failure characteristics of the contact zone between the backfill and surrounding rock is a precondition for safe production in mines. Taking Jinchuan mine as study area, the backfill-surrounding rock contact zones are divided into three models according to their different geometric shapes, namely, a linear model, embedded model, and multiple broken line model. A combined numerical simulation and physical model test method was adopted in this study. The research results show that the damage in the linear model begins at the seam, the failure is mainly concentrated in the filling body, and shear failure is dominant. The damage in the embedded model initially occurs around the inflection points, while the damage in the multiple broken line model initially occurs at the seams, and cracks always appear on the vertical contact surface first. Among the three contact models, the stability increases as follows: embedded > multiple broken line > linear. Moreover, the filling body enclosed by surrounding rock is the most stable, and the surrounding rock located in the footwall is more stable than the filling body located in the footwall. The conclusions of this study provide a theoretical basis for designing a mining scheme for Jinchuan mine and other mines with similar geological conditions and mining methods, and they provide a reference for studying the mechanical properties and stability of composite materials.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献