Simulation Analysis of Delamination Damage for the Thick-Walled Composite-Overwrapped Pressure Vessels

Author:

Fang HouchengORCID,Wang Di

Abstract

In order to verify the delamination damage occurring in thick-walled composite-overwrapped pressure vessels, firstly, for composite delamination damage, a composite laminate model was established. Model I and model II delamination failure processes of composite structures were simulated and verified based on a tiebreak contact algorithm for different mesh sizes, respectively, and the approximate equivalent results were achieved by correcting the inter-ply strength. Then, for in-plane damage to composite materials, the elastic–plastic process was verified by selecting a progressive damage model, with quasistatic nonlinear tensile shear of sample specimens as an example. Further, under the purpose of generality and simplicity, the location of the first occurrence of delamination failure was simulated and analyzed with the tiebreak contact algorithm and a reasonable mesh size, using quasistatic loading of a thick composite-overwrapped pressure vessel cylindrical section as an example. The results showed that delamination occurred at approximately the center, which is in general agreement with the experimentally observed phenomenon. On this basis, the locations of the first significant delamination phenomena in composite-overwrapped vessels under three different ratios of plus or minus 45-degree layup angles were predicted. Finally, the differences in structural strength between the single laying methods and the combined laying method were compared. The results showed that the ratio of 50% had a higher modulus value than a pure 0° ply, but too large a ratio was detrimental to the improvement of structural properties.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3