Modeling Adhesive Wear in Asperity and Rough Surface Contacts: A Review

Author:

Zhang Haibo,Goltsberg Roman,Etsion IzhakORCID

Abstract

Wear is one of the most fundamental topics in tribology and adhesive wear is argued as the least avoidable wear type. Numerical techniques have allowed advances in more realistic simulations of adhesive wear mechanisms and promoted our understanding of it. This paper reviews the classic work on wear modeling by Archard and Rabinowicz, followed by a comprehensive summary of the adhesive wear numerical models and techniques based on physical parameters. The studies on wear mechanisms at the asperity level and rough surfaces are separately presented. Different models and their key findings are presented according to the method type. The advantages and deficiencies of these models are stated and future work, such as considering more realistic geometries and material properties for adhesive wear modeling, is suggested.

Publisher

MDPI AG

Subject

General Materials Science

Reference87 articles.

1. Vibration-based updating of wear prediction for spur gears

2. Wear of Orthopaedic Implants and Artificial Joints;Affatato,2012

3. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment

4. Friction and Wear of Materials;Rabinowicz,1965

5. The Friction and Lubrication of Solids;Bowden,1954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3