Iodide Removal by Resorcinol-Formaldehyde Carbon Aerogels

Author:

Domán Andrea,Battalgazy Bekassyl,Dobos Gábor,Kiss Gábor,Tauanov ZhandosORCID,László KrisztinaORCID,Zorpas Antonis A.ORCID,Inglezakis Vassilis J.ORCID

Abstract

The adsorption technique is widely used in water purification, and its efficiency can be significantly improved by target-specific adsorbent design. Research on iodine and its ion removal from water has attracted a great deal of interest due to increased concentrations in the environment and acute toxic effects, e.g., in human thyroid cells. In this work, the iodide removal performance of two high-surface-area resorcinol–formaldehyde-based carbon aerogels was studied under acidic conditions. The BET surface area was 790 m2/g (RF_ac) and 375 m2/g (RMF-GO), with a corresponding micropore ratio of 36 and 26%, respectively. Both aerogels showed outstanding adsorption capacity, exceeding the reported performance of other carbons and Ag-doped materials. Owing to its basic nature, the RMF-GO carbon aerogel showed higher I− capacity, up to 97 mg/g, than the acidic RF_ac, which reached a capacity of 82 mg/g. The surface chemistry of the aerogels also played a distinct role in the removal. In terms of kinetics, RF_ac removed 60% of the iodide ions and RMF-GO 30% within 8 h. The removal kinetics was of the first order, with a half-life of 1.94 and 1.70 h, respectively.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3