Diatomaceous Earth—Lightweight Pozzolanic Admixtures for Repair Mortars—Complex Chemical and Physical Assessment

Author:

Pavlíková MilenaORCID,Rovnaníková Pavla,Záleská MartinaORCID,Pavlík ZbyšekORCID

Abstract

The presented research is focused on the complex assessment of three different types of diatomaceous earth and evaluation of their ability for application as pozzolana active admixtures applicable in the concrete industry and the production of repair mortars applicable for historical masonry. The comprehensive experimental campaign comprised chemical, mineralogical, microstructural, and physical testing of raw materials, followed by the analyses and characterization of pozzolanic activity, rheology and heat evolution of fresh blended pastes, and testing of macrostructural and mechanical parameters of the hardened 28-days and 90-days samples. The obtained results gave evidence of the different behavior of researched diatomaceous earth when mixed with water and Portland cement. The differences in heat evolution, initial and final setting time, porosity, density, and mechanical parameters were identified based on chemical and phase composition, particle size, specific surface, and morphology of diatomaceous particles. Nevertheless, the researched mineral admixtures yielded a high strength activity index (92.9% to 113.6%), evinced their pozzolanic activity. Three fundamental factors were identified that affect diatomaceous earth’s contribution to the mechanical strength of cement blends. These are the filler effect, the pertinent acceleration of OPC hydration, and the pozzolanic reaction of diatomite with Portland cement hydrates. The optimum replacement level of ordinary Portland cement by diatomaceous earth to give maximum long-term strength enhancement is about 10 wt.%., but it might be further enhanced based on the properties of pozzolan.

Funder

Czech Science Foundation

Grant Agency of the Czech Technical University in Prague

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3