ZnAl-SO4 Layered Double Hydroxide and Allophane for Cr(VI), Cu(II) and Fe(III) Adsorption in Wastewater: Structure Comparison and Synergistic Effects

Author:

Cardinale Anna Maria,Carbone CristinaORCID,Fortunato Marco,Fabiano BrunoORCID,Reverberi Andrea Pietro

Abstract

Owing to their structure, layered double hydroxides (LDHs) and allophane are nowadays considered as promising materials for application in different fields. The goal of this work is to compare the efficacy of allophane and ZnAl-SO4 LDH to remove, by adsorption, some cationic and anionic pollutants from industrial wastewater. Both compounds were synthesized via the co-precipitation route (direct method) followed by hydrothermal treatment, obtaining nanoscopic crystallites with a partially disordered turbostratic (ZnAl-SO4 LDH) or amorphous (allophane) structure. The characterization of the obtained compounds was performed by means of powder x-ray diffraction (PXRD), thermal gravimetry analysis (TGA), field emission scanning electron microscopy analysis (FESEM), and Fourier-transform infrared spectroscopy (FT-IR). The sorbents were tested using wastewater produced by a real metalworking plant and containing ionic species such as Cu(II), Fe(III) and Cr(VI), whose concentration was measured by means of inductively coupled plasma-optical emission spectrometry (ICP-OES). This investigation represents an alternative procedure with respect to standard protocols based on customarily made and artificially lab-produced wastewaters. Both sorbents and their combination proved to be efficient in Cr(VI) removal, irrespective of the presence of cations like Cu(II) and Fe(III). A synergistic effect was detected for Cu(II) adsorption in a mixed allophane/LDH sorbent, leading to a Cu(II) removal rate of 89.5%.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3