Geopolymer: A Systematic Review of Methodologies

Author:

Matsimbe JabulaniORCID,Dinka Megersa,Olukanni DavidORCID,Musonda InnocentORCID

Abstract

The geopolymer concept has gained wide international attention during the last two decades and is now seen as a potential alternative to ordinary Portland cement; however, before full implementation in the national and international standards, the geopolymer concept requires clarity on the commonly used definitions and mix design methodologies. The lack of a common definition and methodology has led to inconsistency and confusion across disciplines. This review aims to clarify the most existing geopolymer definitions and the diverse procedures on geopolymer methodologies to attain a good understanding of both the unary and binary geopolymer systems. This review puts into perspective the most crucial facets to facilitate the sustainable development and adoption of geopolymer design standards. A systematic review protocol was developed based on the Preferred Reporting of Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and applied to the Scopus database to retrieve articles. Geopolymer is a product of a polycondensation reaction that yields a three-dimensional tecto-aluminosilicate matrix. Compared to unary geopolymer systems, binary geopolymer systems contain complex hydrated gel structures and polymerized networks that influence workability, strength, and durability. The optimum utilization of high calcium industrial by-products such as ground granulated blast furnace slag, Class-C fly ash, and phosphogypsum in unary or binary geopolymer systems give C-S-H or C-A-S-H gels with dense polymerized networks that enhance strength gains and setting times. As there is no geopolymer mix design standard, most geopolymer mix designs apply the trial-and-error approach, and a few apply the Taguchi approach, particle packing fraction method, and response surface methodology. The adopted mix designs require the optimization of certain mixture variables whilst keeping constant other nominal material factors. The production of NaOH gives less CO2 emission compared to Na2SiO3, which requires higher calcination temperatures for Na2CO3 and SiO2. However, their usage is considered unsustainable due to their caustic nature, high energy demand, and cost. Besides the blending of fly ash with other industrial by-products, phosphogypsum also has the potential for use as an ingredient in blended geopolymer systems. The parameters identified in this review can help foster the robust adoption of geopolymer as a potential “go-to” alternative to ordinary Portland cement for construction. Furthermore, the proposed future research areas will help address the various innovation gaps observed in current literature with a view of the environment and society.

Publisher

MDPI AG

Subject

General Materials Science

Reference191 articles.

1. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete

2. Waste Material via Geopolymerization for Heavy-Duty Application: A Review

3. Geopolymer Chemistry and Applications;Davidovits,2020

4. Climate change and the cement industry;McCaffrey;Glob Cem Lime Mag (Environ. Spec. Issue),2002

5. Geopolymers and Their Uses: Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3