Design and Optimization of Planar Spiral Coils for Powering Implantable Neural Recording Microsystem

Author:

Luo Jie1,Xue Ruifeng2ORCID,Cheong Jiahao2,Zhang Xuan2,Yao Lei1

Affiliation:

1. School of Microelectronics, Shanghai University, Shanghai 201800, China

2. Shanghai Industrial Technology Research Institute, Shanghai 201899, China

Abstract

This paper presents a design and optimization method utilizing inductive coupling coils for wireless power transfer in implantable neural recording microsystems, aiming at maximizing power transfer efficiency, which is essential for reducing externally transmitted power and ensuring biological tissue safety. The modeling of inductive coupling is simplified by combining semi-empirical formulations with theoretical models. By introducing the optimal resonant load transformation, the coil optimization is decoupled from an actual load impedance. The complete design optimization process of the coil parameters is given, which takes the maximum theoretical power transfer efficiency as the objective function. When the actual load changes, only the load transformation network needs to be updated instead of rerunning the entire optimization process. Planar spiral coils are designed to power neural recording implants given the challenges of limited implantable space, stringent low-profile restrictions, high-power transmission requirements and biocompatibility. The modeling calculation, electromagnetic simulation and measurement results are compared. The operating frequency of the designed inductive coupling is 13.56 MHz, the outer diameter of the implanted coil is 10 mm and the working distance between the external coil and the implanted coil is 10 mm. The measured power transfer efficiency is 70%, which is close to the maximum theoretical transfer efficiency of 71.9%, confirming the effectiveness of this method.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Increasing the Near-Field Interaction of a Flat Spiral Coil by Optimizing the Distribution of Currents in its Turns;2023 Antennas Design and Measurement International Conference (ADMInC);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3