In Situ Measurement and Reconstruction Technology of Cylindrical Shape of High-Precision Mandrel

Author:

Xu Hanwei1234,Sun Zizhou1234,Dai Yifan1234,Guan Chaoliang1234,Hu Hao1234

Affiliation:

1. College of Intelligent Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China

3. Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China

4. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China

Abstract

The technology of in situ measurement of cylindrical shapes is an important means of improving the surface machining accuracy of cylindrical workpieces. As a method of cylindricity measurement, the principle of the three-point method has not been fully studied and applied, so it is seldom used in the field of high-precision cylindrical topography measurement. Since the three-point method has the advantages of a simpler measurement structure and smaller system error compared with other multi-point methods, the research on it is still of great significance. Based on the existing research results of the three-point method, this paper proposes the in situ measurement and reconstruction technology of the cylindrical shape of a high-precision mandrel by means of a three-point method. The principle of the technology is deduced in detail and an in situ measurement and reconstruction system is built to carry out the experiments. Experiment results are verified using a commercial roundness meter and the deviation of cylindricity measurement results is 10 nm, which is 2.56% of the measurement results of commercial roundness meters. This paper also discusses the advantages and application prospects of the proposed technology.

Funder

National Natural Science Foundation of China

Ten key technological projects of Hunan Province in 2023

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3