A Miniature Multi-Functional Photoacoustic Probe

Author:

Lin Riqiang12,Zhang Jiaming1ORCID,Gao Wen2,Wang Xiatian2,Lv Shengmiao2,Lam Kwok-Ho13ORCID,Gong Xiaojing2

Affiliation:

1. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

2. Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Photoacoustic technology is a promising tool to provide morphological and functional information in biomedical research. To enhance the imaging efficiency, the reported photoacoustic probes have been designed coaxially involving complicated optical/acoustic prisms to bypass the opaque piezoelectric layer of ultrasound transducers, but this has led to bulky probes and has hindered the applications in limited space. Though the emergence of transparent piezoelectric materials helps to save effort on the coaxial design, the reported transparent ultrasound transducers were still bulky. In this work, a miniature photoacoustic probe with an outer diameter of 4 mm was developed, in which an acoustic stack was made with a combination of transparent piezoelectric material and a gradient-index lens as a backing layer. The transparent ultrasound transducer exhibited a high center frequency of ~47 MHz and a −6 dB bandwidth of 29.4%, which could be easily assembled with a pigtailed ferrule of a single-mode fiber. The multi-functional capability of the probe was successfully validated through experiments of fluid flow sensing and photoacoustic imaging.

Funder

National Natural Science Foundation of China

CAS Key Laboratory of Health Informatics

Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology

Hong Kong Research Impact Fund

Hong Kong Research Grants Council

Shenzhen Science and Technology Innovation Committee

Shenzhen Engineering Laboratory for Diagnosis & Treatment key technologies of interventional surgical robots

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3