How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications?

Author:

Teymoory Parya1,Zhao Jingzhou2,Shen Caiwei1ORCID

Affiliation:

1. Mechanical Engineering Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA

2. Mechanical Engineering Department, Western New England University, Springfield, MA 01119, USA

Abstract

Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility. Over the past decade, researchers have put in tremendous effort and made significant progress on fiber supercapacitors. It is now the time to assess the outcomes to ensure that this kind of energy storage device will be practical for future wearable electronics and smart textiles. While the materials, fabrication methods, and energy storage performance of fiber supercapacitors have been summarized and evaluated in many previous publications, this review paper focuses on two practical questions: Are the reported devices providing sufficient energy and power densities to wearable electronics? Are the reported devices flexible and durable enough to be integrated into smart textiles? To answer the first question, we not only review the electrochemical performance of the reported fiber supercapacitors but also compare them to the power needs of a variety of commercial electronics. To answer the second question, we review the general approaches to assess the flexibility of wearable textiles and suggest standard methods to evaluate the mechanical flexibility and stability of fiber supercapacitors for future studies. Lastly, this article summarizes the challenges for the practical application of fiber supercapacitors and proposes possible solutions.

Funder

UMass Dartmouth’s Marine and Undersea Technology (MUST) Research Program

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference116 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3