Effect of Al Content on the Wear Evolution of Ti1-xAlxN-Coated Tools Milling Ti-6Al-4V Alloy

Author:

Fan Guanghui12,Zhang Jingjie12,Zhang Peirong12,Du Jin12,Xu Chonghai12ORCID,Yi Mingdong12,Zhang Guoqing12

Affiliation:

1. Faculty of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Key Laboratory of Equipments Manufacturing and Intelligent Measurement and Control, China National Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

Ti1-xAlxN coating is formed by replacing some Ti atoms in TiN with Al atoms, and their properties are closely related to Al content (0 < x < 1). Recently, Ti1-xAlxN-coated tools have been widely used in the machining of Ti-6Al-4V alloy. In this paper, the hard-to-machine material Ti-6Al-4V alloy is used as the study material. Ti1-xAlxN-coated tools are used for milling experiments. The evolution of the wear form and the wear mechanism of Ti1-xAlxN-coated tools are studied, and the influence of Al content (x = 0.52, 0.62) and cutting speed on tool wear are analyzed. The results show that the wear on the rake face changes from the initial adhesion and micro-chipping to coating delamination and chipping. Wear on the flank face varies from the initial adhesion and grooves to boundary wear, build-up layer, and ablation. The main wear mechanisms of Ti1-xAlxN-coated tools are dominated by adhesion, diffusion, and oxidation wear. Ti0.48Al0.52N coating protects the tool well and extends its service life.

Funder

National Natural Science Foundation of China

Science, education and industry integration project of Qilu University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3