Biodegradable Redox-Sensitive Star Polymer Nanomicelles for Enhancing Doxorubicin Delivery

Author:

Li Meng,Guo Jian-Wei,Wen Wei-Qiu,Chen Jem-KunORCID

Abstract

A typical amphiphilic star polymer adamantane-[poly(lactic-co-glycolic acid)-bis(2-carboxyethyl) sulfide-poly(ethylene glycol) monomethyl ether)]4 with a specific hydrophilic/redox-sensitive/hydrophobic structure was designed and synthesized through ring opening and esterification reactions. The self-assembled nanomicelles were used as doxorubicin (DOX) delivery vehicles with suitable critical micelle concentrations (5.0 mg/L). After the drug being loaded, drug-loaded micelles showed good drug-loading efficiency (10.39%), encapsulation efficiency (58.1%), and drug release (up to 60%) under simulated biological environment conditions. In addition, the backbone structure of the biodegradable polymer was easily hydrolyzed by the action of biological enzymes. As expected, cell-based studies showed that the designed polymer micelles possessed good biocompatibility (a survival rate of 85% for NH-3T3 cells). Moreover, the drug (DOX) still maintained good anti-cancer effects after being loaded, which caused 40% of MCF-7 cells to survive. These redox-sensitive micelles showed anti-tumor therapeutic potential.

Funder

Science and Technology Program of Guangzhou City; National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3