On the Formation of Nanocrystalline Grains in Metallic Glasses by Means of In-Situ Nuclear Forward Scattering of Synchrotron Radiation

Author:

Smrčka David,Procházka Vít,Vrba Vlastimil,Miglierini MarcelORCID

Abstract

Application of the so-called nuclear forward scattering (NFS) of synchrotron radiation is presented for the study of crystallization of metallic glasses. In this process, nanocrystalline alloys are formed. Using NFS, the transformation process can be directly observed during in-situ temperature experiments not only from the structural point of view, i.e., formation of nanocrystalline grains, but one can also observe evolution of the corresponding hyperfine interactions. In doing so, we have revealed the influence of external magnetic field on the crystallization process. The applied magnetic field is not only responsible for an increase of hyperfine magnetic fields within the newly formed nanograins but also the corresponding components in the NFS time spectra are better identified via occurrence of quantum beats with higher frequencies. In order to distinguish between these two effects, simulated and experimental NFS time spectra obtained during in-situ temperature measurements with and without external magnetic field are compared.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference29 articles.

1. Effect of uneven surface on magnetic properties of Fe-based amorphous transformer;Chang;World Acad. Sci. Eng. Technol.,2011

2. Surface crystallisation and magnetic properties in amorphous iron rich alloys

3. Development of amorphous ribbon manufacturing technology;Wu;China Steel Tech. Rep.,2014

4. Present status of amorphous soft magnetic alloys

5. Magnetic characteristics of the ferromagnetic Fe-rich clusters in bulk amorphous Nd60Fe30Al10 alloy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3