Controlled Hydrothermal Growth and Li+ Storage Performance of 1D VOx Nanobelts with Variable Vanadium Valence

Author:

Jiang Yuhan,Zhou Xiaowei,Chen Xu,Wen Jia,Guan Linlin,Shi Mingxia,Ren Yang,Liu ZhuORCID

Abstract

One-dimensional (1D) vanadium oxide nanobelts (VOx NBs) with variable V valence, which include V3O7·H2O NBs, VO2 (B) NBs and V2O5 NBs, were prepared by a simple hydrothermal treatment under a controllable reductive environment and a following calcination process. Electrochemical measurements showed that all these VOx NBs can be adopted as promising cathode active materials for lithium ion batteries (LIBs). The Li+ storage mechanism, charge transfer property at the solid/electrolyte interface and Li+ diffusion characteristics for these as-synthesized 1D VOx NBs were systematically analyzed and compared with each other. The results indicated that V2O5 NBs could deliver a relatively higher specific discharge capacity (213.3 mAh/g after 50 cycles at 100 mA/g) and median discharge voltage (~2.68–2.71 V vs. Li/Li+) during their working potential range when compared to other VOx NBs. This is mainly due to the high V valence state and good crystallinity of V2O5 NBs, which are beneficial to the large Li+ insertion capacity and long-term cyclic stability. In addition, the as-prepared VO2 (B) NBs had only one predominant discharge plateau at the working potential window so that it can easily output a stable voltage and power in practical LIB applications. This work can provide useful references for the selection and easy synthesis of nanoscaled 1D vanadium-based cathode materials.

Funder

National Natural Science Foundation of China

Young/Middle-aged Backbone Teacher Cultivating Scheme of Yunnan University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3