Effects of Laser Plasma Formation on Quasi-Phase Matching of High-Order Harmonics from Nanoparticles and Atoms

Author:

Ganeev Rashid,Boltaev Ganjaboy,Kim Vyacheslav,Guo ChunleiORCID

Abstract

The application of nanoparticles (NPs) and quasi-phase matching (QPM) each play an important role in the enhancement of high-order harmonics (HHG) of ultrashort laser pulses. We analyze various regimes of nanoparticle plasma formation for the creation conditions for maximal QPM-induced enhancement of the groups of harmonics in the extreme ultraviolet (XUV). Laser plasmas were formed on the surfaces of NPs- and microparticle (MPs)-contained targets using ablation by nanosecond, picosecond, and femtosecond pulses. Different conditions of laser plasma formation (extended and perforated plasma) and variable concentrations of free electrons in these three cases of laser ablation led to modifications of QPM conditions. We demonstrate novel approaches in the optimization of QPM at the conditions of laser ablation of NPs and MPs by pulses of different durations. The formation of QPM conditions using femtosecond and picosecond heating pulses during HHG in such plasmas allowed the growth of conversion efficiency of the groups of harmonics, with the enhancement factors exceeding 25× in different ranges of XUV, contrary to less efficient QPM in the case of nanosecond pulse-induced ablation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Scientific Research Project of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3