The Role of Heat Acclimation in Thermotolerance of Chickpea Cultivars: Changes in Photochemical and Biochemical Responses

Author:

Arslan ÖzlemORCID

Abstract

This study was conducted to determine the effects of heat stress on the physiological and biochemical responses of chickpea (Cicer arietinum L.; Diyar and Küsmen-99) cultivars that are both heat acclimated and non-acclimated. The seedlings were grown in soil for 15 days and then exposed to heat stress (35 °C, 5 days) after heat acclimation (30 °C, 2 days) or non-acclimation (25 °C, 2 days). Chlorophyll a fluorescence (ChlF) measurements were analyzed using the JIP test. Heat acclimation had no significant effect on ChlF parameters. Seedlings exposed to higher temperatures by acclimation were more tolerant in terms of ChlF parameters and Diyar had a better photochemical activity of photosystem II (PSII). Heat stress resulted in a decrease in electron transport efficiency, quantum yield, photosynthetic performance, and driving force in both chickpea cultivars, while K-band, L-band, and quantum yield of dissipation increased, especially in the non-acclimated cultivars. Additionally, ion leakage (RLR), malondialdehyde (MDA) content, and H2O2 synthesis increased in the cultivars, while water content (RWC), chlorophyll (a + b) content, and carotenoid content of the cultivars decreased. On the other hand, the cultivars attempted to eliminate reactive oxygen species (ROS) by increasing the content of anthocyanins and flavonoids and the activity of antioxidant enzymes (SOD and POD) under heat stress. Heat acclimation alleviated the negative effects of heat stress on each cultivar’s water content, chlorophyll and carotenoid content, membrane damage, photosynthetic activity, and antioxidant defense systems. The results of this study showed that, by providing heat acclimation more effectively, Diyar was better able to cope with the biochemical and physiological alterations that could be resulted from heat stress.

Funder

Scientific Research Unit

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3