Smartphone-Based Optical Fiber Fluorescence Temperature Sensor

Author:

Huang Jianwei,Liu TingORCID,Zhang Yeyu,Zhan Chengsen,Xie Xiaona,Yu QingORCID,Yi Dingrong

Abstract

Optical fiber sensors are one preferred solution for temperature sensing, especially for their capability of real-time monitoring and remote detection. However, many of them still suffer from a huge sensing system and complicated signal demodulate process. In order to solve these problems, we propose a smartphone-based optical fiber fluorescence temperature sensor. All the components, including the laser, filter, fiber coupler, batteries, and smartphone, are integrated into a 3D-printed shell, on the side of which there is a fiber flange used for the sensing probe connection. The fluorescence signal of the rhodamine B solution encapsulated in the sensing probe can be captured by the smartphone camera and extracted into the R value and G value by a self-developed smartphone application. The temperature can be quantitatively measured by the calibrated G/R-temperature relation, which can be unified using the same linear relationship in all solid–liquid–gas environments. The performance verifications prove that the sensor can measure temperature in high accuracy, good stability and repeatability, and has a long conservation time for at least 3 months. The proposed sensor not only can measure the temperature for remote and real-time detection needs, but it is also handheld with a small size of 167 mm × 85 mm × 75 mm supporting on-site applications. It is a potential tool in the temperature sensing field.

Funder

National Natural Science Foundation of China

Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3