Effect of Filtered Back-Projection Filters to Low-Contrast Object Imaging in Ultra-High-Resolution (UHR) Cone-Beam Computed Tomography (CBCT)

Author:

Choi Sunghoon,Seo Chang-Woo,Cha Bo Kyung

Abstract

In this study, the effect of filter schemes on several low-contrast materials was compared using standard and ultra-high-resolution (UHR) cone-beam computed tomography (CBCT) imaging. The performance of the UHR-CBCT was quantified by measuring the modulation transfer function (MTF) and the noise power spectrum (NPS). The MTF was measured at the radial location around the cylindrical phantom, whereas the NPS was measured in the eight different homogeneous regions of interest. Six different filter schemes were designed and implemented in the CT sinogram from each imaging configuration. The experimental results indicated that the filter with smaller smoothing window preserved the MTF up to the highest spatial frequency, but larger NPS. In addition, the UHR imaging protocol provided 1.77 times better spatial resolution than the standard acquisition by comparing the specific spatial frequency (f50) under the same conditions. The f50s with the flat-top window in UHR mode was 1.86, 0.94, 2.52, 2.05, and 1.86 lp/mm for Polyethylene (Material 1, M1), Polystyrene (M2), Nylon (M3), Acrylic (M4), and Polycarbonate (M5), respectively. The smoothing window in the UHR protocol showed a clearer performance in the MTF according to the low-contrast objects, showing agreement with the relative contrast of materials in order of M3, M4, M1, M5, and M2. In conclusion, although the UHR-CBCT showed the disadvantages of acquisition time and radiation dose, it could provide greater spatial resolution with smaller noise property compared to standard imaging; moreover, the optimal window function should be considered in advance for the best UHR performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3