Experimental Analyses and Predictive Modelling of Ultrasonic Welding Parameters for Enhancing Smart Textile Fabrication

Author:

Baraya Mohamed1ORCID,El-Asfoury Mohamed S.1ORCID,Fadel Omnia O.1ORCID,Abass Ahmed12ORCID

Affiliation:

1. Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said University, Port Fuad 42526, Egypt

2. Department of Materials, Design and Manufacturing Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK

Abstract

This study aims to illustrate the design, fabrication, and optimisation of an ultrasonic welding (UW) machine to join copper wires with non-woven PVC textiles as smart textiles. The study explicitly evaluates UW parameters’ impact on heat generation, joint strength, and electrical properties, with a comprehensive understanding of the process dynamics and developing a predictive model applicable to smart textiles. The methodological approach involved designing and manufacturing an ultrasonic piezoelectric transducer using ABAQUS finite element analyses (FEA) software and constructing a UW machine for the current purpose. The full factorial design (FFD) approach was employed in experiments to systematically assess the influence of welding time, welding pressure, and copper wire diameter on the produced joints. Experimental data were meticulously collected, and a backpropagation neural network (BPNN) model was constructed based on the analysis of these results. The results of the experimental investigation provided valuable insights into the UW process, elucidating the intricate relationship between welding parameters and heat generation, joint strength, and post-welding electrical properties of the copper wires. This dataset served as the basis for developing a neural network model, showcasing a high level of accuracy in predicting welding outcomes compared to the FFD model. The neural network model provides a valuable tool for controlling and optimising the UW process in the realm of smart textile production.

Funder

Egyptian Academy of Scientific Research and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3