A Multiobjective Land Use Design Framework with Geo-Big Data for Station-Level Transit-Oriented Development Planning

Author:

Dong Shihai,Wang YandongORCID,Dou Mingxuan,Gu YanyanORCID,Zhang Peiqi,Gong Jianya

Abstract

Transit-oriented development (TOD) is among the most feasible strategies for relieving urban issues caused by the unbalanced development of transportation and land use. This study proposes a multiobjective TOD land use design framework for the optimization of the land use layout in station catchments. Given the high density and diverse development in Chinese megacities, a planning model that considers nonlinear impacts on ridership, land use efficiency, quality of life, and the environment is constructed. The model applies fine-grained geo-big data to fill gaps in the empirical and statistical data and improve practicability. A genetic multiobjective optimization approach without reliance on objective weighting is used to generate alternative land use schemes. A metro station in Shanghai is applied as a case study. The results indicate that the proposed ridership objective outperforms the commonly used linear function, and the optimization method has superior extreme optima and convergence to baseline models. We also discuss the consistencies and conflicts in the objectives and provide a balanced land use scheme considering local policies. This work provides suggestions for sustainable urban design with coordinated land use and transportation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Special Fund for Surveying, Mapping and Geoinformation Research in the Public Interest

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3